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ABSTRACT

This report presents an analysis of the jamming performance of frequency-
hopped communication systems in which the user-signal hops according to a nonuni-
form distribution across the available hopping bandwidth.
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1. INTRODUCTION

This report analYzes the effect of optimized partial-band Gaussian noise jamming on the per-
formance of communication s'stems in which the signal frequency-hops according to a nonuniform
distribution over the available hopping bandwidth. The analysis is developed for the class of mod-
ulations having an exponentially decreasing bit error probability in additive white Gaussian noise.
The results can be applied to any modulation since the Chernoff bound provides an exponentially
tight upper bound to the bit error probability at high enough signal-to-noise ratios. At low signal-
to-noise ratios, the bit error probability can always be approximated by an exponential function.
at least over a limited range.

Although ideally it should do so. there are situations in which a signal may not hop according
to a uniform distribution. For instance, in a frequency-hopped satellite link, a signal may not be
allowed to hop in certain portions of the hopping band and. instead. may be forced to hop more
frequently in other portions of the band. This is the case when a ,'ide-band signal restricted from
hopping to the band edges in order to avoid spilling energy outside of the allocated band, more
frequently revisit the center of the band. It is also the case when a user signal is restricted from
hopping in certains portions of the band because of the presence of other users. Conditions such
as these result in a nonuniform distribution of the user signal across the band.

The optimal partial-band janmming strategy and the resulting bit eiror probability are calcu-
lated here for arbitrary nonuniform (listributions. and these results are compared to the performance
achieved with uniform frequency-hopping. '1 he results confirm intuition in establishing the fact that
the more uniform-likc the distribution, the smaller the jamming loss when compared to uniform
hopping. A quantitative measure of the resulting loss is provided for arbitrary continuous and
discrete distributions.

This report is organized as follows.

Section 2 derives the well-known worst-case jaminling performance for a uniform distribution.

Section 3 analyses the optimal jamming strategy and worst-case bit error probability perfor-
mnance for arbitrary nonuniform continuous distributions. A geometric interpretation is given of
the optimal jamming strategy. The perf'-tuance is compared to that for uniform hopping, at high
and low signal-to-noise ratios. A simple example is given to illustrate the analysis.

Section 4 develops the analysis for arbitrary discrete distributions, and follows the same outline
as Section 3. The equations are derived for staircase-like distributions. Such distributions are
important because they arise when several users frequency-hop within the same band [1]. The
staircase discontinuities result from the fact that, -when the signal revisits certain bands more than
once, the probability distribution overlaps itself. The results obtained for discrete distributions are
similar to those obtained for nonuniform continuous distributions. The results from Sections 3 and 4
can be combined to handle any hybrid distribution having continuous portions and staircase-like
discontinuities. Finally, a simple example is given to illustrate the discrete case results.

Section 5 draws conclusions from the analyses, and provides guidelines for the design of nonuni-
form frequency-hopping plans.
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2. UNIFORM FREQUENCY DISTRIBUTION

2.1 NOTATIONS AND ASSUMPTIONS

2.1.1 The Signal

Throughout this report. the notation {ill} with braces represents a frequency set. and It'
uithout braces represents the size or Lebesgue measure *2' of that set.

In a frequency-hopped communication system, the user signal is allowed to hop over all or

part of the available hopping bandwidth {i'}. Let {1I 0} represent the frequency band or set of
frequency bands over which the density is defined. For a uniform distribution, the density is a
constant equal to a0 = L1I 0 over the set {IV0 }. and equals 0 elsewhere. {IV0 } is also called support
of the distribution throughout this report. {IA.,} with subscript u will be used to emphasize that

it is the support of a uniform distribution, and similarly subscript n for nonuniform distributions.
Figure 2-1 illustrates a uniform hopping distribution.

1418-0O

PROBABILITY

ao= 1/Wo ,I W 0

FREQUENCY. f

41 W

Figure 2-1. Uniform hopping distribution.

2.1.2 The Modulation

The modulation schemes considered are those whose demodulated bit error probability in

additive white Gaussian noise (A\VGN) is characterized by the equation

h(Eb/No) = A e- E,\ (2.1)

where Eb is the bit energy, NO is the single-sided white Gaussian noise power spectral density, and
A and c are positive constants which depend upon the modulation. The above equation repre-
sents the detection performance for a large class of modulations which includes Binary Frequency
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Shift Keying (BFSK), Differential Phase Shift Keying (DPSK). Differential Quadrature Phase Shift
Keying (DQPSK). Differential Offset Quadrature Phase Shift Keying (D-OQPSK), and Differential
Minimum Shift Keying (DMSK). to name a few. The analysis is valid for the class of modulations
having an exponentially decreasing bit error probability in additive white Gaussian noise. The
results can be applied to any modulation since the Chernoff bound provides an exponentially tight
upper bound to the bit error probability at sufficiently high signal-to-noise ratios.

2.1.3 The Janimer

The assumed jammer is a single partial-band white Gaussian noise jammer which can spread
its total power, J. over the entire hopping band. {If}. or over just a subset {IU} of {WV}. When
the jamming signal covers completely {I'}, the jamming noise power spectral density is equal to
N\ = J/i1'. The bit energy-to-jamming neise power spectral density ratio. Eb,/Nj. is represented by
p. For It' < It'. the effective jamming noise power spectral density is equal to \eff = Vj/(v/I1')
over the jammed set of frequencies {IV}. and 0 elsewhere.

In this report. the analysis is restricted to the set of jamming strategies described below.

The total jammer power. J. is maintained constant. i.e.. at a given power level, the jammer
selects the most effective strategy within the class of strategies it can support. Note that the
receiver noise is usually dominated by the jamming noise, and can be neglected.

The jammer is allowed to place its power over one or several frequency bands. When only
one frequency band is jammed. the jammer selects the size and the position of that frequency
band within the hopping bandwidth. {II'}. When several frequency bands are jammed. the size
and position of each one of these bands is selected by the jammer, and the jamming noise power
spectral density is constant over the jammed frequency bands. Furthermore. the total jamming
power is kept constant and equal to J.

These stategies, referred to as single-power level partial-band white Gaussian noise jamming,
correspond to a single jammer with one transmitter and a large bank of narrow bandpass filters
which can be configured to transmit a signal of constant total power in one or several frequency
bands. The number of these frequency bands. the width of each one of them, and their posi-
tion within {I} are chosen by the jammer in order to provide the maximum disruption of the
communication performance.

More effective jammers exist, which are not analyzed here. Multi-power level partial-band
colored Gaussian noise jamming. in which the jammer spreads its power across several frequency
bands, with. possibly, different power levels on each band. Even more general is the jammer which
spreads its power across the jammed bandwidth according to a nonuniform spectral density. This
jammer would provide more effective jamming strategies. In this report, the terms optimal jammer
and optimal jamming strategy are used with the understanding that the optimality is only for the
class of single-power level partial-band white Gaussian noise jamming strategies described above.
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Finally, the jammer is assumed to have knowledge of the hopping bandwidth, of the shape and
position of the user signal probability distribution across {1I'}, and its goal is to maximize the user
bit error probability.

2.2 OPTIMAL JAMMING STRATEGY

Using Bayes rule. the probability of error P, for a uniform distribution can be expressed as

P, = Pr{ c S is jainned}Pr{S is jarnmed} (2.2)

since there is no transmission error when the signal is not jammed.

The conditional probability that the signal is jammed. given p and 11. is

Pr{S is jainmpd . = 1lli'° for iii < W. (2.3)1 for WIj > WIo.(.3

Thus. the bit error probability P,(e p. lj). given p and WiJ. is

P. (e (p. I) { (11J'I1o) h(p IUi1 .') for Wi < l(24
P h(p Wil/IV) for IVj > Io(

where p = Eb/-N'j is. by definition, the signal-to-jamming noise ratio.

The optimal jamming strategy is obtained by choosing the value of It' which maximizes the
bit error probability.

For an arbitraLy function h(-). a simple calculation yields the optimal jamming strategy It'*

It- { = l o for p _< x*1 1/1 0  (2.5)
iJ = xiUip for p > x*'/h(.'0

where x* is the solution of the differential equation h(x) + xdh(x)/dx = 0.

In the case where h(x) = Ae -c. the optimal strategy is given by the expression (2.5) with
X* =C

-

The optimal jamming strategy IV* is shown in Figure 2-2. as a function of signal-to-jamming
noise ratio p. The optimal fractional bandwidth b is equal to 11 /Wu. At low signal-to-noise ratios,
the jammer has plenty of power to spread over the full hopping bandwidth Wo, and is more effective
as a white noise jammer. At high signal-to-noise ratio, the jammer's best strategy is to concentrate
its power on just a fraction of the hopping bandwidth, hitting the signal less frequently but more
effectively than white noise jamming.

5



2.3 PERFORMANCE UNDER OPTIMAL JAMMING

The bit error probability P,(e I p. Il) under optimal jamming is obtained by substituting the
optimal jamming strategy IV* given by (2.5) into Equation (2.4). This gives

r h(p 110/W) for p < xU'/0(
P(e p. W'l ) = (x'W/1 0 ) h(x*) I/p for p > x'W/ 0. (2.6)

For the modulations of interest. h(x) = Aecx , and Equation (2.4) is given by

ep f. { h(p 110/11) for p < c-11/1o
P(e fP, | ) ) (c- 1 li'/iT0) h(c - 1 ) / p  for p > c- 11 I'o (2.7)

The bit error probability under optimal jamming is shown on Figure 2-3 as a function of the signal-
to-jamming noise ratio p. The bit error probability is a decreasing function of the signal-to-jamming
noise ratio. The decrease is exponential at signal-to-jamming noise ratios less than W/W 0 , and is
hyperbolic at signal-to-jamming noise ratios greater than IW/1'0.

141810-2
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Figure 2-2. Optimal jamming strategy for uniform hopping.

6



141810-3Pu(e p,W,)

h( PWO/W)

SW h(x*)

IW p
P

x" W/W0  SIGNAL-TO-JAMMING NOISE RATIO

Figure 2-3. Worst-case performance for uniform hopping.



3. NONUNIFORM CONTINUOUS FREQUENCY DISTRIBUTIONS

3.1 FREQUENCY HOPPING DISTRIBUTION

This section examines the case of arbitrary nonuniform continuous frequency distributions.

The frequency distribution of interest. a(f). is a real-valued function defined over a frequency
set or support {10} = {f a(f) > 0} contained within {1}. In this section. the function a(.) is
assumed to be continuous, with minimum am > 0 and maximum aA1.

The set {Wa}. defined as

{Wa}= {f a(f) >a} for am < a <aI (3.1)

represents the set of frequencies at which the probability density exceeds the value a. In particular,
for a = 0. IWO = {IW}.

Depending on the shape of the distribution o(-). {It} may or may not be a connected set 1 of
frequencies. When {Wa} is a connected set. there exists two frequencies fJ and f- such that

{W} {f If < f < f:}. (3.2)

Let us define a real-valued function. F(.). as follows

r(a) = £{"Cla}. for all a such that a,, < a < a.,, (3.3)

where £ is the Lebesgue measure 12]. In other words. r(a) represents the length or measure of
the frequency set {IWO} on which the hopping density equals or exceeds a. Figures 3-1 and 3-2
illustrate the definition of the function F(.) for connected and disconnected sets, respectively. It is
assumed, throughout this section, that the function r(.) and its first derivative -(') exist on the
interval [am, a.Mj].

It results from the above definition that

r(o) = I 0  (3.4)

= F(a)da 1 (3.5)

Let us define type-I distributions as distributions such that

£{f I a(f) = aAJ} = 0 (3.6)

A set is connected if any two of its points can be joined by a line completely contained in the

set.

9
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Figure 3-1. Function r with connected sets.
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Figure 3-2. Function r with disconnected sets.
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i.e., the peak value aMj is achieved over a frequency set of measure 0. e.g., a single frequency or a
countable number of frequencies. Distributions which are not type-I are called type-IH distributions
are illustrated on Figures 3-3 and 3-4. With this definition, r(aI) 0 for a type-I distribution,
and F(aM) > 0 for a type-I! distribution.

141810-4

PROBABILITY
DISTRIBUTION
Ct(f)

TYPE- I

Wa

4 W

Figure 3-3. Continuous hopping distributions of type-I.

3.2 OPTIMAL JAMMING STRATEGY

The following notation is used with respect to jammed frequency sets. A jammed frequency
set of arbitrary size is represented as {W}, with the subscript j. The frequency set jammed by
the optimal jammer is represented as {IW*}, where the * denotes optimality as previously defined.

Consider the class of jammers of equal bandwidth I' < W0 and different jammed sets {W } C
{Wo}. The jamming strategy {1U } such that r(aj) = 1lj places the jamming power over the set
{ff I E { a= {f I a(f) > aj}, i.e., where the user signal is most likely to occur. Among
all jammers of bandwidth W,. this strategy maximizes the probability of jamming the signal. It
can be shown, mathematically, that any departure from that choice results in a lower probability
of jamming the signal. The probability of jamming the signal, given is equal to the integral of
the frequency distribution over the jammed frequency set. The optimal jamming strategy is one
which maximizes the bit error probability. It is shown, in Appendix A, that the optimal jamming

strategy 5!'* is

11
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Figure 3-4. Continuous hopping distributions of type-l.

* For type-I distributions,

{it'} {I1 } for all values of p (3.7)

" For type-l distributions.

= {W;} for p < c-T'/F(a,,)

= {c-lVip} for p > c-'IW/F(a,1 )

where aj is the implicit solution of the equation

W= (a*) + - r(a)da (3.9)CP a; j ;

and {c-lW/p} is any subset of {IaM,}, of size c-1 1/p.

The above equations indicate the size of the optimal jammer bandwidth and the exact portion
of the hopping bandwidth where the jammer places its power. The variation of the optimal jammer
bandwidth as a function of the signal-to-jamming noise ratio is illustrated on Figure 3-5. The
variation of the optimal fractional bandwidth 6b = H'!/W as a function of the signal-to-jamming
noise ratio is illustrated on Figure 3-6. A geometric interpretation of the optimal jamming strategy
is given in Section 3.5.

12
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3.3 PERFORMANCE UNDER OPTIMAL JAMMING

Equation (A.4) gives the bit error probability for a jammer of arbitrary width Wj. The
jamming strategy which maximizes the bit error probability is given by Equations (3.7) and (3.8).
Substituting It' in Equation (A.4) for the optimal jamming strategy W* yields the worst-case
performance for type-I and type-l distributions. This yields the basic expressions for the bit error
probability under optimal jamming

P,(e I p. T*) = [aITV -t- r(a)dalh(--IV- (3.10)

a cph (3.11)

a-h(c - 1  P rM r(a)da) (3.12)
cp Q2!I" a.

,,ieie us tatlsfiez Equation (3.9). It is easy to check that the above expressions are equivalent.

In summary, the worst-case bit error probability is

* For type-I distributions.

P,(e p. I I-*) a* h( for p> 0  (3.13)
cp

where aj satisfies

r(a*) + j (a)da (3.14)
cp a3 ;

9 For type-I distributions,

a c "'( J?) for p < cIw/a)

P,(e I P, I") (3.15)

a,1c-'i!h(c- ') for p > c-1I/r(aAl)

where a; satisfies Equation (3.9), {1! = {11"a; }, and IV* = F(a;).

The general form of the probability of error as a function of signal-to-jamming noise ratio is
shown in Figures 3-7 and 3-8 for type-I and type-I distributions, respectively.

14
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Figure 3-8. Performance under optimum jamming for type-Il distributions.
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3.4 PERFORMANCE COMPARISON

3.4.1 Performance at High Signal-to-Jamming Noise Ratio

We now compare the performances. at high signal-to-jamming noise ratios, of a signal hopping
according to a nonuniform distribution and facing its optimal jammer {1*} , to the performance of
the same signal hopping uniformly and facing its optimal jammer {1'J}. It is shown in Appendix B
that the ratio of the nonuniform bit error probability to the uniform bit error probability at the
same signal-to-jamming noise ratio p is equal to or approaches ai/ao., where ao.u = 1/W0,
represents the value of the distribution for uniform frequency-hopping. Specifically

" For type-I distributions,

P,,(e [p. Wi'* ) p--. a.,-i . - (3 .16 )
P" ( e p. I *.u )  ao.u

" For type-Il distributions,

P=(e p.1 ITV ) - a I asp >_ max(c-W /1 'o. c-l' '/F(a .j)) (3.17)
P, (e I p. IV u ao.u

For both types of distributions, the performance for nonuniform frequency-hopping is worse than
that achieved for uniform frequency-hopping at high signal-to-jamming noise ratio. The corre-
sponding increase in bit error probability is by a factor of a.r/ao,u. Since the bit error probability
increases by a factor of aM.%/ao, the effective signal-to-noise ratio decreases by a corresponding
factor. We now prove that., for a same performance level, the loss in signal-to- jamming noise ratio
is also equal to a1 iao.,,.

The ratio of bit error probabilities is given by Equations (3.16) and (3.17). Let pu and p, be
the signal-to-jamming noise ratios at which the uniform and the nonuniform hopping plans achieve
the same bit error probability. Since the bit error probabilities are inversely proportional to p at
large values of p, the ratio p/pu is

Pn = a,%[/ao.u. (3.18)
Pu

In other words, the signal-to-noise ratio loss is equal to aA!/ao., for type-I distributions, and
asymptotically equal to a,1!/ao, for type-lI distributions. It should be pointed out that this last
property results from the exponential form of the function h(.) assumed in Equation (2.1).

From the above results, several observations can be made concerning the performance loss due
to nonuniform hopping.

At high signal-to-jamming noise ratios, the loss can be very large if the ratio aAf/ao,. is very
large. Thus, a frequency distribution with a high narrow peak or a high narrow plateau will generate
a large signal-to-noise ratio loss. and this loss will only show up at high operating points, i.e., at

16



high p. This is generally the case if the set {F(aAI)} is small, e.g.. if it is a small percentage of 1l1,
and if aM is clearly larger than the rest of the distribution, i.e.. if the plateau or the peak(s) are
pronounced. This would be the case of a distribution having a large number of very narrow and
tall peaks (resembling a large number of Dirac impulses) with a small total measure, even if these
peaks are scattered uniformly over the available band. A scheme which could be used to generate
such a large set of Dirac impulses could also be used by the jammer to jam precisely the same set
of frequencies.

Similarly. a frequency distribution with a low wide peak, or a low wide plateau, or a large
number of low peaks of large total measure i.e.. F(aA!) large] will generate a moderate SNR loss,
and this loss will show up at lower operating points.

3.4.2 Performance at Low Signal-to-Jamming Noise Ratio

In a similar fashion, it is shown in Appendix C that the ratio of the nonuniform bit error
probability to the uniform bit error probability satisfies

Pneipl J.') '-_0 .
iv - ... t~ . (3.19 )

where {0',o} and {l0.,,} represent the support sets of the nonuniform and the uniform frequency
distributions. respectively. In the case where both distributions have the same support set. the
limit is 1

P.(e p Ill..) p-0P, 1 
(3.20)

P.(e p. I, J)

i.e.. as the signal-to-jamming noise ratio p tends to 0. the performance for uniform and nonuniform
frequency-hopping are asymptotically equal.

The above analysis leads to the following observation. In a frequency-hopped communication
system, it is preferable to use a uniform frequency-hopping scheme if one wants to minimize the
bit error probability in a jammed environment. If a uniform distribution is not possible due to
constraints placed on the user signal hopping band. then the distribution should be as uniform
as possible, i.e., the largest peak aMy in the distribution should be kept as close as possible to
a0 . A frequency-hopping scheme with a number of small peaks in the probability distribution is
preferable to une hpving even one single larger peak. Such a choice will result in a reduced and

small performance loss when compared to the uniform case. The resulting increase in bit error
probability is lOLog10 (axg/ao) dB.

3.5 GEOMETRIC INTERPRETATION

It is possible to give a geometric interpretation to the optimal jamming strategy and to the
worst-case bit error probability.

17



3.5.1 Geometric Interpretation of the Optimal Jamming Strategy

As shown in the previous section, the bandwidth of the optimal jamming strategy IV* is given
by

It' = F(a*) (3.21)

where a; satisfies

S - F(a)da. (3.22)

Thu,!

a it = a*11- +, r(a)da (3.23)

=-iff a(f)df (3.24)

where o(fj) = o(f ) = a*. since the right-hand terms are two equivalent representations of the

probability Pr{f < f < f';}.

Let us define

(Ii
A(p) a(f)df (3.25)

as the area under the distribution n(.) between fj and fj.

Similarly, let

B(p) = a;j c- (3.26IL (3.26)
P

be the area of the rectangle of width c- 1U/p. and 8.1(p) = a.lc-1lU/p. These areas are shown as
cross-hatched regions on Figures 3-9 and 3-10. The worst-case jamming strategy is determined by

the following geometric conditions:

. For type-I distributions, the optimal jammer places its energy on the set {1'} = {F(a)}

where a; is such that

A(p) = B(p) for all values of p (3.27)
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* For type-Il distributions.

If p < C-l71iF(a.%1 ). the optimal jammer places its energy on the set {'7} = {fr(a*)} where

a* is such that A(p) = 8(p):

If p > c-61'!F(a11). the optimal jammer places its energy on any subset of width B,(p)

contained within {F(at) }.

With the above interpretation, for a given signal-to-jamming noise ratio, a is that value which
provides equal shaded areas A and 6. The optimal jamming strategy is {11j} = {11'a;}, and the

bandwidth of the jammed set is equal to TVj = F(a*), as shown on Figures 3-9 and 3-10. The
vase filling analogy can be helpful to visualize the condition which determines the optimal jamming
strategy as a function of the signal-to-jamming noise ratio.

141810-12

a:x(f)

A (p) = B(p)

A (p) B (p)

0- 0-

Figure 3-9. Geometric interpretation of the optimal janmming strategy for type-I dis-
tributions.

3.5.2 Geometric Interpretation of the Worst-Case Performance

e For type-I distributions.

It results from Equation (3.13) that the probability of error under optimal jamming equals
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I. (P) B (P)
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p > C-7 W/i- (am)
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a~M

1 (P) fB (p)

Figure 3-10. Geometric interpretation of the optimal jamming strategy for type-Il

distributions.

Pn(e 1 p. T*) =13(p)h (cI A°(P)) (3.28)

where B(p) was defined above, and AO(p) = a*11* is the cross-hatched area shown on Figure 3-11.

With this geometric interpretation, it is easy to see how the optimal jammer changes as a function

of p. In particular. as p - c. a* - a,. Ao(p)/B(p) - 1. and Pn(e p, Uj*) - a.c-'Vh(c-')/p.
as expected. Also, as p - 0, a* - 0. B(p) - 1. and P,(e I p. W'*) - h(pVo/W').

* For type-H distiibutions.

The bit error probability follows from Equation (3.15)

J B(p)h(c- J p) forp< c-/F(a)

P.(e I p, ITJ) = (3.29)

BM(p)h(c - 1) for p > c-1W/F(a,).

20



141810-14

Pn(e p, W"v A0 (p) Sa;W;

'BM (p) Za W

~~(p) -1 COP (cp
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1 
)

p

0 c-iW/r(aM)

Figure 3-11. Geometric interpretation of the worst-case performance.

3.6 EXAMPLE

To illustrate the previous equations, we consider the case of a triangular distribution of type-I,

as shown on Figure 3-12. The support set is W0 . and the peak equals 2a 0 . with ao = 1/11'. The

function F is easily seen to be

2ao - 0
F (a) =- a . (3.30)

2aO

Using Equation (3.23), the optimal jamming strategy is such that

a-= a IV*] + -(2ao-a) (3.31)

or, equivalently,

a* = 2ao I + ( )- - (- )J (3.32)

Consequently, the optimal jamming strategy is

It7 = It1o 1 + c+lUo 1 c (--o)2] (3.33)
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f
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4IW

Figure 3-12. Example of triangular distribution.

and from Equation (3.13). the worst-case bit error probability is

P(eI p. W*) =- 2aoU 1 ( )2 -( _).] Je [-.,*o 1-( )2J (3.34)J cp WIV0  cpl'O'

Figures 3-13, 3-14 and 3-15 represent the variations of the optimal jammer bandwidth, the optimal
fractional bandwidth and the worst-case bit error rate, respectively, as a function of p. Notice that,
at high signal-to-jamming noise ratios, the performance loss is equal to 3 dB when compared to
the uniform distribution.
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0

Figure 3-13. Optimialjammrer bandwidth for a triangular distribution.

14810-17

Wa

0

Figure 3-14. Optimal fractional bandwidth for a triangular distribution.
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p

Figure 3-15. Worst-case bit error rate for a triangular distribution.
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4. DISCRETE FREQUENCY DISTRIBUTIONS

4.1 FREQUENCY HOPPING DISTRIBUTION

The frequency distributions considered in this section are discrete distributions which can best
be described as staircase-like. The analysis for discrete distributions having continuous sections
and staircase-like discontinuities can be carried out in a similar fashion using the results derived in
this section and in the previous section. The focus in this section is on staircase-like distributions.

Staircase-like distributions take on a finite set of values. ak. between 0 and aMI. A representative
distribution from this class is shown in Figure 4-1. Specifically. the frequency distribution a(.) is

141810 19

(f) WM WM= r

I I

aM

W,,

fak  , f orfEIAk1 k , I 41

II ~ I

II ~ II
II ~ I

I--I __"___,_______
iI..

{AWk} {AWM}

wo 0 F

of 114'0 suc that

q ~~W= r0  -!

Figure 4-1. Staircase-like discrete distribution.

defined as

{ (f) --- ak, for f e {-A-llk}, (k = 0,... ,M ) (4.1)

a0  = 0

where {{AB}: k = 0 .... ,A t 1} is a collection of finite non-overlapping sets realizing a partition
of {BW0} such that1

The symbols U and 0 represent the union of sets and the empty set, respectively.
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{ Uk 0{Alk} ={"0} (4.2)
{A1Vo} ={-lU.M_ 1 } - 0.

The trivial definitions of {AW0} and { AIVt_-} are introduced because they simplify the formula-

tion of the general solution. As was the case for continuous distributions, the notation with braces
{AW} represents a set. and All without braces denotes the size or Lebesgue measure [2] of that

set.

Since a(.) is a probability density, it also satisfies

Sakl = 1- (4.3)
k=l

Let us introduce the scalar quantities Pk

Pk = Y:i=k a [Al'i, for k = I ..... M. (4.4)
P0 = Pi 1, P.11-1 = 0.

The quantities Pk represent the cumulative probabilities starting from the peak of the distribution.

Finally, the function F(.) associates the set {rk} to the scalar ak as follows

{rk) = {f I a(f) > ak} = U'Lk{AI1i}. for k = 1 .... I. (45)
{r0} = {1} {r1 } = {0}. {r1.11} =0.

The function r(.) is similar to that used for continuous distributions, except that the simpler
notation {Fk} is used instead of the previously used notations {lak} or F(ak). As indicated, rk

represents the measure of the set {Fk}.

The above definition results in the following sequence of inclusions

{W} = {ro} ; rl .= . I = A = {,v} D - = 0, (4.6)

and their measures satisfy

rk = ZEt Ai . for k =1...... (4.7)

0< <_<... <_rk <... <rI = IO

It should be observed that the definition of the sets {AkI} and {Fk} applies to connected as well
as non-connected sets.

26



4.2 OPTIMAL JAMMING STRATEGY

Jammers of the same width. WJ, placing their power in different subbands of {W} do not
have, in general, the same effectiveness. Maximum effectiveness is achieved when the jammer {Wj}
positions its energy around the peak of the distribution so as to maximize the probability of jamming
the signal. This is possible since the jammer knows the distribution's shape and position, as was
previously assumed. For instance, if Wl < AII'M, then any strategy such that {IIJ} C {AIVM} is
optimal among strategies of width 1U3.

In what follows, the jammer is assumed to always position its energy around the distribution
peak ;o a.- to maximize the probability of jamming the signal. The remaining optimization left to
the jammer is to select its width, W1U. in order to maximize the bit error probability at a given
signal-to-jamming noise ratio.

The probability of jamming the signal. conditioned on IW'j, is

Pr{S is jammed I I,} = Pk-1 + a-(1l - rk- 1) (4.8)

for {Fk-1} C {1I} C {Fk}. and k = 0 ... 1.

Consequently. the conditional bit error probability Q, (e I p. It') is

Qn(e Ip Iti) = [Pk-1 + ak(WI - Fk-1)] h(p -i). (4.9)
It'

It is shown, in Appendix D, that the optimal jamming strategy {IV* } is given by the expression

{III0}. for p < pi

= {lfi.k}, for pk < P 5P p (k =..,- 1)
{rk 1}, for p' p P. (4.10)

{lij,M}, for p _ PM

where {Ilik} is any frequency set such that

W P-
K= - + rk.1 - 1 (4.11)cp ak

and Pk, Pk art defined as
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Pk = C-1 akI" (4.12)
Pk-1 + ak(rk - Allk-i)

P = C-1 akeIl" (4.13)

Pk-1 + akFk-2.

Figure 4-2 illustrates the variation of lItj as a function of the signal-to-jamming noise ratio.
Figure 4-3 illustrates the variation of the optimal fractional bandwidth = 1 */W as a function of

the signal-to-jamming noise ratio. As p increases past p', It'! decreases to Fk-1, and stays at that

value for p - P < Pk-1. This behavior then repeats itself, with k replaced with k + 1. The curve
consists of alternating flat plateaus and hyperbolic sections. At very low signal-to-jamming noise
ratio, the jammer has enough power to jam the whole distribution, i.e., It'* = WU0 . As p gets larger,
the optimal jammer only jams a fraction of W0 , and uses its power more efficiently by jamming
the frequency subbands most frequently visited by the user signal. As the signal-to-jamming noise
ratio gets very large, the optimal jammer is eventually forced to place all its power over a narrower
frequency subband of {AltO1 } over which the probability of hitting the user signal is largest.

wi r2

W 
g

I ,
I g I i

0 PI P2 P2 PM-1 PM-i PM

Figure 4-2. Optimal jamming strategy versus signal-to-jamming noise ratio.
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I !

' g I I i

P1  P' P2  Pi PM-1 PM-i PM

Figure 4-3. Optimal fractional bandwidth versus signal-to-jamming noise ratio.

4.3 PERFORMANCE UNDER OPTIMAL JAMMING

Substituting the optimal jammer given by Equation (4.10) into Equation (4.9) gives the worst-
case bit error probability

Q.(e Ip. Itj) = (4.14)

h(pl1o/TV) for p < p

akc- I "h(c-' + 1 )) forPk<_P pkSP'

Pk-1h(PFk-1/II) for P4 <- P S Pk-<

a c-Iit"h(c- ' )  for p >_ PM

where Pk, Fk, pk, and p' are defined in equations (4.4), (4.5), (4.12) and (4.13), respectively, and
k= 1. Al- 1.
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Figure 4-4 cpresentt, the variation of Q,(e I p, W*) as a function of the signal-to-jamming

noise ratio. The performance curve has an exponential shape at low signal-to-noise ratios, and
a hyperbolic shape at very large signal-to-noise ratios. For intermediate values of p, the shape

alternates between those of (1/p)e- P and e-tP, where u and v are positive numbers which depend
on k.

141810-22

On (ep, W*I) A: VARIES LIKE evp
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Figure 4-4. U.'orst-case performance versus signal- to-jamming noise ratio.

4.4 PERFORMANCE COMPARISON

4.4.1 Performance at High Signal-to-Noise Ratio

Let It'n and It'!~ denote the optimal jammer bandwidth for the discrete and the uniform dis-
tributions, respectively. It results from Equation (4.14) that Qn (e I p, W *,,) equals a~fc- 'W h ( c - ) / p

for p > PMf = e--AIBm.
Comparing this expression to that for P(e I P, 11'*,u) gives

Q(e I P, Wi*) ,a for p > max(c- I c-1  (4.15)

Pu(e I p, IW* ao,- W0,u

and the last condition simplifies to p >! PjM = c-]WI/AIVM •f
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Let Pu and p, be the signal-to-jamming noise ratios at which the uniform and the nonuniform
hopping plans achieve the same bit error probability. Since the bit error probabilities are inversely
proportional to p at large values of p, the ratio pn,/pu is

Pn= aM/aO. (4.16)

Pu

In other words, the signal-to-noise ratio loss is equal to a.1i/ao.u for large values of p.

From the above result, several observations can be made concerning the performance loss due
to nonuniform hopping. At high signal-to-jamming noise ratios, the loss can be very large if the
ratio a.ji/ao, is very large. Thus, a frequency distribution with a high narrow plateau will generate
a large signal-to-noise ratio (SNR) loss. and this loss will only show up at high operating points,
i.e.. at high p. This is generally the case if AIAI, is small. i.e.. if it is a small percentage of W 0,
and if a.1f is clearly larger than the rest of the distribution. i.e.. if the plateau is high compared to
the rest of the distribution. This is also the case for a distribution having a large number of very
narrow and tall plateaus with a small total measure, even if these plateaus are spread across the
whole band. It is therefore desirable to use a hopping scheme with a distribution as uniform-like
as possible, so as to keep the value of the largest plateau(s) as small as possible. These results are
quite similar to those obtained for continuous distributions.

4.4.2 Performance at Low Signal-to-Noise Ratio

From Equation (4.14). the worst-case bit error probability Qn(e p, It-*,n) equals h(p/l'O )
for p < Pl = c-lalU/(P2 + al-IV1 ) . Therefore.

Qn(e p. lI.n) = e_( (Uo._wo. ))" for p < rin(clC' Pi) (4.17)

Pu(e P. HITj* )  eI0,.

and for distributions with equal support sets.

QOn(e I P. WN)* It'.orp<mi~-
Q = 1 . for p < nin(c' .p). (4.18)

P.(e p. W*) Wo.u

Figure 4-5 summarizes the behavior of the bit error probabilities for the uniform and nonuniform
hopping plans.

31



141810.24
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(dB)

10 log 10 _~.... ao,

Figure 4-5. Compared performance for uniform and discrete distributions.

4.5 GEOMETRIC INTERPRETATION

4.5.1 Geometric Interpretation of the Optimal Jamming Strategy

The optimal jammer is given by Equation (4.10). For Pk < P < P,. 11i = 1lJ.k, or equivalently,

Pk-1 + ak(1I1'  Fk-1) = a--. (4.19)cp

The geometric meaning of this equation is identical to that given for continuous distributions, and
is illustrated on Figure 4-6. The left side of Equation (4.19) represents the integral, Ak(p), of
the distribution over the set {JT}, and the right side represents the area. Bk(p), of the rectangle
of height ak and width c-1V/p. The same interpretation exists for all values of p. With this
interpretation, Equation (4.19) is equivalent to

Ak(p) = Bk(p). (4.20)

Thus, the jammer's best strategy is such that the two areas A(p) and B(p) under each curve are
equal.
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Figure 4-6. Geometric interpretation of the optimal jamming strategy for discrete
distributions.

4.5.2 Geometric Interpretation of the Bit Error Probability

Equation (4.14) shows that the worst-case bit error probability equals

Q,,(e 1 p. IlJ) = Ak(p)h(c - 1 Ak(p)) (4.21)
J ~Ak (P)

where Ak(p) was defined above, and Ak.O(P) is equal to akIV*. This simple geometric interpretation
allows one to visualize the variation of the bit error probability under optimal jamming, as the
signal-to-jamming noise ratio changes. This is illustrated on Figure 4-7.

4.6 EXAMPLE

The following example illustrates how to use the equations giving the optimal jammer and
worst-case bit error probability in the particular case of a signal hopping according to the frequency
distribution shown on Figure 4-8. The distribution is a type-I distribution, defined over a support
set {W}. It takes on values al over the set {W 1 } and a2 over a set {1I'2}. From Equation (4.4),
P0 = P1 = 1, P2 = a21V2, P3 = 0. and {Fo} = {W}. {r} = {IV0} {Fr 2} = {W 2}, {r 3} = 0. In
addition, AWI'I = I'1. mIlV2 = IV2 by definition.
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Figure 4-7 Geometric interpretationi of the worst-case performance.
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Figure 4-8. Example of staircase distribution for NI=2.

Finally, from equations (4.12) and (4.13). Pi = alt. Pl = c- 1al1I/2T2 . P2 -c-Iw/W 2.

Therefore, from Equation (4.10), the optimum jamming strategy is

{10}, for p < c-lalV

{1 j. 1 }. for c-alI " <  p <  c - l a l I V / 'a 2 1 '2

(4.22)

{1' 2 }, for c-a l /a 2U 2 <_ p < c- I'/It2

{j.2}, for p > cIU/W 2

where {Ij, } and {' 3 .2 } are two frequency subsets such that

{W2} C_ {11.} C { }li' _ tI. a2 - al (4.23)
p al

and

0 C { j,2} _ { 2} ,2  = c -  _. (4.24)
P

35



141810-27

I 
W

a -ap

W 0  -W _ 2  a" a1
c W2 a,

W2W

c- 1 aW 1  c.1 W c .i W

a 2 W2  W2

Figure 4-9. Example of optimal jamming strategy for . = 2.
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Figure 4-10. Example of optimal fractional bandwidth for M = 2.
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Figure 4-9 illustrates how the measure of the jammed set varies with p. Figure 4-10 illustrates
the variation of the optimal fractional bandwidth with p. The bit error probability under optimized
jamming is

eI p ) -

11]a.) for p < c-'aIl"

ail_(C - a2-a- WP) for c-la]i < p < c-lalW/a 2 1'2

(4.25)

a 2 Ih(p i) for c-lalW/a2lY2 < p S c-lI4/W2

a2W h(c - ') for p > c-'/12.

Figure 4-11 represents the probability of error under optimum jamming.

141R80-.2

On (elp, W;)

I Ip

e-1a1 W1  c-1 a- .
a2w2  w

Figure 4-11. Example of worst-case performance for M = 2.

Consider, now, a distribution having one very narrow and large spike somewhere within an
otherwise uniform distribution. This is a special case of the discrete distribution just described,
where I4"2 is very small compared to W0, and a2 is very large compared to al. It was shown that
for large signal-to-jamming noise ratios the jamming loss is equal to lOLoglo(aM/ao) dB. Since
the distribution has a very large spike, aM~ is much larger than a0, and the jamming loss is very
large. However, the values of p for which this expression applies are very large. In fact, p must
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exceed c- 1W/' 2 which, for small values of I2, is much greater than the value of p at which the
system operates. Therefore, the maximum jamming loss must be computed at the largest operating
signal-to-jamming noise ratio, and could, in a case such as the one described here, be much smaller
than lOLoglo(aAj/ao). The worst-case two-level distribution for a system operating at a SNR of p,
is one whose overlap size WV2 satisfies pi = c- 1'IV/ 'V2. When it is the case, the worst-case jamming
loss is incurred at the signal-to-jamming noise ratio at which the system operates.
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5. CONCLUSION

The jamming performance of frequency-hopped communication systems has been analyzed for
arbitrary continuous or discrete hopping distributions. The analysis shows that the worst-case
performance loss when compared to uniform hopping is either equal to or bounded above by the
expression lOLoglo(aA/ao).

Whenever possible, it is in the interest of the communication designer to select a hopping plan
resulting in a frequency distribution which is as uniform as possible, since this leads to the best
antijam performance. When this is not possible, two strategies are available to the designer in
order to mitigate the additional loss due to the nonuniform distribution.

The first strategy consists of allowing a small number of high narrow spikes or high narrow
plateaus in the frequency distribution. As was shown, the maximum jamming loss, given by the
ratio aAf/ao, is very large, but it is only incurred at very large signal-to-jamming noise ratios well
above the system's operating point.

The second strategy consists of allowing a number of low wide spikes or low wide plateaus
in the frequency distribution. In this case, the maximum jamming loss is incurred at or possibly
below the system's operating point but it is quite moderate.

The specific values will depend upon the modulation waveform chosen, the system's operating
point, and the user signal bandwidth.

Finally, the use of Chernoff bounding techniques [3] makes it possible to extend these results
to arbitrary modulations.
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APPENDIX A
CALCULATION OF THE OPTIMAL JAMMER FOR NONUNIFORM

CONTINUOUS FREQUENCY DISTRIBUTIONS

A.1 CONDITIONAL BIT ERROR PROBABILITY

Since the jammer knows the shape of the distribution a(.) and takes advantage of that infor-
mation, the probability that the signal is jammed, conditioned on It', is

Pr{S is jammed I = I( a(f)df for VVJ < W0 (A.1)
1 1 for Ilj > Wo

with Ili = F(aj), or equivalently

ajIli + f F(a)da for It < 11o
Pr{S is jammed I Wj} a (A.2)

1 for It'i > W 0

with 11' = r(aj), and am < aj < aMj.

If the sets {W} associated with the distribution o(.) are connected sets, the integral over a
set is equivalent to an integral between two integration limits

Pr{S is jammed I ItJ} = a(f)df for I < W0 (A.3)
1 fo r I V > I 0

with a(fj) = a(f) = aj, and 1' = r(aj). For the sake of clarity and without loss of generality,
the notation valid for connected sets will be used.

Using Bayes' rule, the conditional bit error probability P (e I p, IV-), given ajammer bandwidth
Ivj, is equal to

P.(e I p, Wj) = [aj3 i + 'r(a)daJh(plVi/W) for It, < W)

h(pW/W) for Wj _> Wo

with W.' = r(aj), and am < aj <am.
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A.2 OPTIMAL JAMMING STRATEGY

The optimal jamming strategy {j*} maximizes the bit error probability Pn(e I p, W) with
respect to IVJ. Let us examine the expression for the derivative of P,(e I p, W) with respect to
IV_ For th,- class of modulptions for which h(x) = Aec, this derivative equa!s

. h(pW3/IU) - c-(ajF(aj) +f aM F(a)da)

(A.5)Sam F(a)da]
h(pIS'/ ) - cr(aj) - S- a J

for WI < W. The sign of aP,(e p, W )/0Wj is given by the sign of the implicit expression T(aj)

T(aj) = cr(a) - -jF(a)da. (A.6)

Since T(O) is -oc, and T(a,11) = lU/p - cr(aAI), the derivative. only changes sign if T(aAM) is
positive.

Consequently,

e For lu/p - cF(a.r) > 0, T(aj) equals 0 for some value a between am and aM. The value of
a* at which the derivative equals 0 is the implicit solution of the equation

I = r(a*) + - (a)da. (A.7)
cp a! a;

e For U/p - cF(a,%f) < 0. T(aj) is negative over the interval (a,, akj), and the maximum of
P,, is achieved for a; = a,.

It is now possible to express the optimal jamming strategy:

* For type-I distributions,

{1} = {Wa;} for all values of p (A.8)

where a; is the implicit solution of Equation (A.7).

* For type-I distributions,

{ {Iva; for p < c-II/r(ag) (A.9)
{W/cp} for p > c-B'W/F(aAI)

where a; satisfies Equation (A.7), and {c-lW/p} is any subset of {WaM}, of size c-lW/p. The
optimal fraction of the bandwidth to be jammed is given by the expression 6 = Wi*/W.
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APPENDIX B
PERFORMANCE AT HIGH SIGNAL-TO-JAMMING NOISE RATIO FOR A

NONUNIFORM CONTINUOUS DISTRIBUTION

Since W > 0, it results from Equation (3.9) that

0 1< F(a)da < (B.1)a,_ a; ,;-cp

or

1i F(a)da - O, as p oc. (B.2)

Thus, a; - aM as p -- oc.

For type-I distributions, F(aMj) = 0. Then, from equations (3.13), (3.9), and (B.2), it results
that a; , af, and F(a;) - c-'W/p.

Consequently,

P.(e I p. I*) -* amc-l it' h(c-1), as p -, c (B.3)

P

and the ratio of the nonuniform bit error probability to the uniform one is asymptotically equal to

P.(e I pI Wj) p-. am (B.4)

P.(e pt It) ao.u

where ao,u = 1/Wo.u is the value of the uniform distribution with support W0,.

For type-Il distributions, F(aft) > 0. and for p > c-IV/F(am),

P.(e I p, Ili) = aAc-1 It' h(c-1). (B.5)P

For the uniform distribution and p> c-W/IVo, we have from Equation (2.7)

P.(e I p, V*) = ao,u ith(c-1). (B.6)

Therefore, for p _ max(c- 1W/Wou, C-'w/F(aM)), the ratio of the nonuniform bit error probability
to the uniform one is equal to

P(e I P, W,) _am (B.7)
P.,(e p, Wj) ao,.

This completes the proof.
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APPENDIX C
PERFORMANCE AT LOW SIGNAL-TO-JAMMING NOISE RATIO FOR

NONUNIFORM CONTINUOUS DISTRIBUTIONS

It follows from Equation (3.d) and integration by parts that

a f
a ; a-y(a)da (C.1)

and therefore, a; -* 0. and Ij* = F(a) -* ITE, as p -- 0.

Equation (3.9) further implies

!a aiU+ F(a)da -] r(a)da = 1. (C.2). cp ~ ij

Thus, from Equation (3.10)

P,(e P,*) -h(p1 ) ,  as p -* O. (C.3)

Comparing the asymptotic performances for uniform and nonuniform hopping leads to the result

Pn(e pI 1. *) p-O
---e pII l ( C .4 )

gu(e p, 1I*)

If the uniform and nonuniform distributions have different support sets {IWO,} and {WO,uI respec-
tively, the limit of the above ratio is

P,(e I P ---* elWon_. as p - 0. (C.5)P (e Ip. WVJ)

Q.E.D.
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APPENDIX D
CALCULATION OF THE OPTIMAL JAMMING STRATEGY FOR

DISCRETE DISTRIBUTIONS

D.1 DEFINITION OF THE FUNCTIONS {Qk(I1j)}

Consider the real functions {Qk(ilj); k = 0, 1, ,Al), defined for 0 < 1' < W0 . These
functions are of interest here because they coincide with the probability distribution Qn(e I p, W)
over a subset of (0. W). Therefore their behavior on each subset determines that of the probability
distribution. They are as follows.

* QO, defined as

Q°(IV) =h(p- ), (D.1)

equals Qn(e I p, Wi) for {o 0} = {F 1} c {1t} c {ro} = {W} .

* Q (1i,), defined for k = 1,... Al - 1. as

J = [Pk-1 + ak(Iij - Fk-1)] h(piL), (D.2)

equals Q(e p, It) for {Fk-1} C {I)} _ {rk}

Q 1'(I j), defined as

.
Q;-t(wj) aif IVh(p-i) (D.3)

equals Q(e I p, Ili) for 0 {Flu} C {1j} C {FM} = {AIrit}.

As can be seen from Equation (4.9). Qn(elp. It') consists of sections of the functions {Qk(.); k =
0..... ,LM} pieced together, and coincides with Qk only for {Fk-1} g {i,} _ {Fk}.

D.2 OPTIMUM OF Qn( i)

Calculation of the jamming strategy which maximizes the probability of error Qn(e I p, I43 )
requires the study of the maxima of the functions Q (IF,).

For the class of modulations considered, the partial derivative of Qk(Il') with respect to 14'
is

OgQk (11;,j) c,,
n [ak - W(Pk-1 + ak(li - rk 1))lh(pWi-) (D.4)

for {rk.1l} g {Il} g ik)- (D.5)

From this expression., it follows that
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> 0, for p < akc-1 [Pk-1 + ak(IVJ - Fk-l)-1'

= 0. for p = akc-'I [Pk1 + ak(Ili - Fk-l)]- '. (D.6)

< 0, for p > akc-'IV [Pk--1 + ak(II i - rk-l)1

The maximum of Qi(j) over (0., W) is achieved for Ili = ItJ,k, where

{rk.1} C {11
3 1 c {Fk}, and

11 = - + Fk-1 - - (D.7)
cp ak

D.3 OPTIMUM OF Q(e lp, WI)

Since Q,(e I p, IF') coincides with Qk(W,) for ({rk- 1 } {ItJ C {Fk}), the optimal jammer
over that interval is given by

{Fk-1}, if aQk (F- 1 ) '< 0. and otQk) < 0

11I,*1 = {W .k}, if -(Fk-1) > 0. and o(:t TO < 0 (D.8)

{Fk}, if -Qk (rk-1) > 0, and _ T_ 0or.k' 1 >0 and ~1 (k)

or equivalently, for k 1 1...,M

r'k}, if p-pk and P>Pk

{Ilij,k}, if Pk < P <_ Pk (D.9)

{rk}, if p5P' and P Pk

where

Pk = C- akl' (D.10)
Pk-1 + ak(rk - z111*k)

and

Pk = c_1  akW (D.11)
Pk-4-l + akFk 2
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It is a simple matter to show that Pk < Pk < Pk-1 for k = 1...., A1. It results that the optimal
jamming strategy, { 1 }, which is obtained by piecing together the above solutions valid over each
sub-interval, is given by the expression

{Wo}, for p < pi

= {Ijk}, for pk: < p K Pk (k = 1....... - 1) (D.12)
{Fk-1}, for p'k P : P k - 1 ..... V - 1)

{I1 j}..for p > p,%

where lU',k is as shown in Equation (D.7). and Pk and p' are defined in equations (D.10) and
(D.11).

In summary. the optimal jamming strategy {It'* } consists of Al + 1 expressions, each one being
valid over a specific range of signal-to-jamming noise ratios.

This completes the calculation of the optimal jamming strategy for arbitrary discrete distri-
butions.
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